Team calling 2 agents(RAG and web search) , but no context is being returned

from agno.agent import Agent
# import phi.api
from agno.models.groq import Groq
# from phi.model.ollama import Ollama
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.playground import Playground, serve_playground_app
from dotenv import load_dotenv
from agno.embedder.ollama import OllamaEmbedder
from agno.knowledge.pdf import PDFKnowledgeBase, PDFReader
from agno.vectordb.pgvector import PgVector
from agno.vectordb.search import SearchType

# import os
# import phi

# phi.api=os.getenv("PHI_API_KEY")
websearch_agent=Agent(
    name="web agent",
    role="you are web search agent,generate an answer based on data from websearch",
    model=Groq(id="llama-3.1-8b-instant"),
    tools=[DuckDuckGoTools(fixed_max_results=5)],
    instructions=["always include sources"],
    show_tool_calls=True,
    markdown=True,
    debug_mode=True
)

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFKnowledgeBase(
    # Read PDF from this URL
    path="C:/Users/jithi/Desktop",
    # Store embeddings in the `ai.recipes` table
    vector_db=PgVector(table_name="recipes", db_url=db_url,embedder=OllamaEmbedder(id="nomic-embed-text",dimensions=768),search_type=SearchType.hybrid),
)
# Load the knowledge base: Comment after first run
# knowledge_base.load(recreate=True)

rag_agent = Agent(
    name="RAG agent",
    model=Groq(id="llama-3.1-8b-instant"),
    # model=Ollama(id="llama3.1:8b"),
    knowledge=knowledge_base,
    # Enable RAG by adding references from AgentKnowledge to the user prompt.
    add_references=True,
    # Set as False because Agents default to `search_knowledge=True`
    search_knowledge=False,
    markdown=True,
    debug_mode=True,
    instructions=["retrieve essential and accurate points only"],
    role=["You are RAG agent"],
)

multi_agent=Agent(
    name="multi agents",
    model=Groq(id="llama-3.1-8b-instant"),
    team=[rag_agent,websearch_agent],
    instructions=["call the RAG agent first and then only call the web agent if necessary content isnt recieved from the RAG agent,give priority to info in returned by the RAG agent"],
    show_tool_calls=True,
    markdown=True,
    debug_mode=True
)

app=Playground(agents=[websearch_agent,rag_agent,multi_agent]).get_app()
if __name__=="__main__":
    # knowledge_base.load(recreate=True)
    serve_playground_app("playgroundwebagent:app",reload=True )

while the agents are run independently,both the web agent and rag agent seems to work fine. But when i call them both us the team orchestration. in debugging the the function call seems to happen,but no content is being returned from the knowledge base nor the web search.

Hi @hri
Thanks for reaching out and for using Agno! I’ve looped in the right engineers to help with your question. We usually respond within 48 hours, but if this is urgent, just let us know, and we’ll do our best to prioritize it.
Appreciate your patience—we’ll get back to you soon! :smile:

Hi @hri This is a week model for tool call and hallucinates. Can try using a better model for the same ?
I used OpenAIChat(id="gpt-4o") and it worked fine for me . Let us know if you face any issue with it .