How to get relevance score when search chunks use qdrant + bge-m3
Example code:
class ExternalKnowledgeBase:
def __init__(self):
self.vector_db = Qdrant(
embedder=OllamaEmbedder(id="bge-m3", dimensions=1024),
url=os.getenv("QDRANT_HOST"),
port=os.getenv("QDRANT_PORT"),
collection=os.getenv("EXTERNAL_COLLECTION_NAME"),
api_key=os.getenv("QDRANT_API_KEY") or None
)
self.knowledge_base = TextKnowledgeBase(
path=paths if paths else "knowledge_base/txt",
vector_db=self.vector_db,
num_documents=3,
)
# Usage:
documents = external_kb.knowledge_base.vector_db.search(query, limit=10)
I want to retrieve the relevance score between the query and the returned documents from Qdrant.
How can I access the score value in this case?
Thanks all.